Serveur d'exploration Melampsora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Specialization for resistance in wild host-pathogen interaction networks.

Identifieur interne : 000059 ( Main/Exploration ); précédent : 000058; suivant : 000060

Specialization for resistance in wild host-pathogen interaction networks.

Auteurs : Luke G. Barrett [Australie] ; Francisco Encinas-Viso [Australie] ; Jeremy J. Burdon [Australie] ; Peter H. Thrall [Australie]

Source :

RBID : pubmed:26442074

Abstract

Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale) and pathogen (Melampsora lini) populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers) that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1) overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2) that specific network architecture can emerge under different evolutionary scenarios; and (3) network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions.

DOI: 10.3389/fpls.2015.00761
PubMed: 26442074
PubMed Central: PMC4585140


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Specialization for resistance in wild host-pathogen interaction networks.</title>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Encinas Viso, Francisco" sort="Encinas Viso, Francisco" uniqKey="Encinas Viso F" first="Francisco" last="Encinas-Viso">Francisco Encinas-Viso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Australian National Biodiversity Research, Commonwealth Scientific and Industrial Research Organization Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Australian National Biodiversity Research, Commonwealth Scientific and Industrial Research Organization Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26442074</idno>
<idno type="pmid">26442074</idno>
<idno type="doi">10.3389/fpls.2015.00761</idno>
<idno type="pmc">PMC4585140</idno>
<idno type="wicri:Area/Main/Corpus">000061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000061</idno>
<idno type="wicri:Area/Main/Curation">000061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000061</idno>
<idno type="wicri:Area/Main/Exploration">000061</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Specialization for resistance in wild host-pathogen interaction networks.</title>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Encinas Viso, Francisco" sort="Encinas Viso, Francisco" uniqKey="Encinas Viso F" first="Francisco" last="Encinas-Viso">Francisco Encinas-Viso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Australian National Biodiversity Research, Commonwealth Scientific and Industrial Research Organization Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Australian National Biodiversity Research, Commonwealth Scientific and Industrial Research Organization Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale) and pathogen (Melampsora lini) populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers) that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1) overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2) that specific network architecture can emerge under different evolutionary scenarios; and (3) network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26442074</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Specialization for resistance in wild host-pathogen interaction networks.</ArticleTitle>
<Pagination>
<MedlinePgn>761</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2015.00761</ELocationID>
<Abstract>
<AbstractText>Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale) and pathogen (Melampsora lini) populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers) that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1) overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2) that specific network architecture can emerge under different evolutionary scenarios; and (3) network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barrett</LastName>
<ForeName>Luke G</ForeName>
<Initials>LG</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Encinas-Viso</LastName>
<ForeName>Francisco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Centre for Australian National Biodiversity Research, Commonwealth Scientific and Industrial Research Organization Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burdon</LastName>
<ForeName>Jeremy J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Peter H</ForeName>
<Initials>PH</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization Agriculture Flagship Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">avirulence</Keyword>
<Keyword MajorTopicYN="N">bipartite</Keyword>
<Keyword MajorTopicYN="N">generalist</Keyword>
<Keyword MajorTopicYN="N">rust</Keyword>
<Keyword MajorTopicYN="N">spatial</Keyword>
<Keyword MajorTopicYN="N">specialist</Keyword>
<Keyword MajorTopicYN="N">temporal</Keyword>
<Keyword MajorTopicYN="N">virulence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26442074</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2015.00761</ArticleId>
<ArticleId IdType="pmc">PMC4585140</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Evolution. 2002 Jul;56(7):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1735-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):025101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 24;433(7028):895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15729348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):431-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Ecol. 2006 Aug 14;6:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16907983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 6;450(7171):870-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19891-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Mar 05;3(3):e1740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18320058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jul;17(14):3401-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Dec;89(12):3387-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19137945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Aug 22;276(1669):2913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Aug;183(3):513-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Aug;90(8):2039-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19739366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2010 Jul;79(4):811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2011 Feb;65(2):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ecol. 2011 Jan;99(1):96-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21243068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):E288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Sep;14(9):877-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21749596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Nov;14(11):1149-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21951910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 May;15(5):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22372578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e41366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2012 Oct;25(10):1918-1936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22905782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Mar;7(3):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23178671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2013 Feb;21(2):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23245704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Mar;17(3):340-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24354432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Interface Focus. 2013 Dec 6;3(6):20130033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24516719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2014 Apr 11;5:77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24782890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Jul 22;281(1787):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24870042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Sep 1;88(17):9799-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Aug 28;512(7515):436-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25043057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(9):2527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25716695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Jan;89(1):53-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Jun;53(3):704-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1564-1575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568407</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
</noRegion>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<name sortKey="Encinas Viso, Francisco" sort="Encinas Viso, Francisco" uniqKey="Encinas Viso F" first="Francisco" last="Encinas-Viso">Francisco Encinas-Viso</name>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000059 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000059 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26442074
   |texte=   Specialization for resistance in wild host-pathogen interaction networks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26442074" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Mon Nov 2 18:19:24 2020. Site generation: Thu Feb 15 23:05:49 2024